ekt/opt.py

138 lines
3.8 KiB
Python
Raw Normal View History

import pyomo
2024-11-27 19:19:03 +00:00
import pandas as pd
from pulp import *
2024-11-27 19:19:03 +00:00
class Scheduler:
def __init__(self,
task_path='data/tasks.csv',
block_path='data/blocks.csv',
patient_path='data/patients.csv'):
2024-11-27 19:19:03 +00:00
"""
Read case and session data into Pandas DataFrames
Args:
case_file_path (str): path to case data in CSV format
session_file_path (str): path to theatre session data in CSV format
2024-11-27 19:19:03 +00:00
"""
try:
self.df_tasks = pd.read_csv(task_path)
2024-11-27 19:19:03 +00:00
except FileNotFoundError:
print("Task data not found.")
2024-11-27 19:19:03 +00:00
try:
self.df_blocks = pd.read_csv(block_path)
2024-11-27 19:19:03 +00:00
except FileNotFoundError:
print("Session data not found")
try:
self.df_patients = pd.read_csv(patient_path)
2024-11-27 19:19:03 +00:00
except FileNotFoundError:
print("Patient data not found")
self.create_lists()
self.extend_data()
def extend_data(self):
# Date to integer all dates
# tasks date
newcol = [self.date2int(date) for date in self.df_tasks['date'].tolist()]
self.df_tasks.insert(7, "dateint", newcol)
# block date
newcol2 = [self.date2int(date) for date in self.df_blocks['day'].tolist()]
self.df_blocks.insert(3, "dateint", newcol2)
return
def create_lists(self):
self.s = self.df_tasks['priority'].tolist()
self.d = self.df_tasks['duration'].tolist()
self.dates = self.df_tasks['date'].tolist()
self.b = self.df_blocks['available'].tolist()
self.block_dates= self.df_blocks['day'].tolist()
self.patient_ids = self.df_patients['patient'].tolist()
self.task_patient= self.df_tasks['patient'].tolist()
# convert dates of tasks and blocks to (week,day)
self.convert_dates()
return
def convert_dates(self):
self.week_day = [self.date2week_day(date) for date in self.dates]
self.block_week_day = [self.date2week_day(date) for date in self.block_dates]
def date2int(self, date, dzero="25/11/2024"):
return self.date2week_day(date)[0]*7 + self.date2week_day(date)[1]
def date2week_day(self, date, dzero="25/11/2024"):
d0 = pd.to_datetime(dzero, dayfirst=True)
delta = (pd.to_datetime(date, dayfirst=True) - d0).days
day = delta%7
week = int((delta - day)/7)
return week,day
def int2date(week, day):
d0 = pd.to_datetime("25/11/2024", dayfirst=True)
delta = datetime.timedelta(days = 7*week + day)
date = d0 + delta
return date
sc = Scheduler()
print(sc.df_tasks)
print(sc.df_blocks)
print(sc.df_patients)
# Declare variables for optimization
s = sc.s
print(f's = {s}')
d = sc.d
print(f'd = {d}')
b = sc.b
print(f'b = {b}')
B = len(b)
n = len(s)
A = sum(b)
# Import PuLP
# Define the problem
prob = LpProblem("Schedule_Tasks", LpMaximize)
# Define y
y = LpVariable.dicts('Block', [(i, t) for i in range(n) for t in range(B)], cat = 'Binary')
# Definite objective function
prob += lpSum(s[i]*b[t]*y[(i,t)] for i in range(n) for t in range(B))
# CONSTRAINTS
# Constraint #1
prob += lpSum(y[(i,t)] for i in range(n) for t in range(B)) <= A
# Constraint #2
for i in range(n):
prob += lpSum(y[(i,t)] for t in range(B)) <= d[i]
# Constraint #3
for t in range(B):
prob += lpSum(y[(i,t)] for i in range(n)) <= 1
prob.solve()
# Visualize solution
tasks_blocks = pd.DataFrame(columns=['Task', 'Block'])
for i in range(n):
for t in range(B):
if y[(i,t)].varValue == 1:
tasks_blocks = pd.concat([tasks_blocks,
pd.DataFrame({'Task': [i], 'Block': [t], 'Patient': sc.task_patient[i] })],
ignore_index=True)
print(tasks_blocks)
print(sc.df_tasks)
print(sc.df_patients)
print(sc.df_blocks)
print(type(sc.df_blocks))